<legend id="1oymc"></legend>

  • <big id="1oymc"></big>
  • 职测答题技巧:函数最值问题如何快速求解

    来源:国家事业单位考试网 2021-01-12 17:06:24
      函数最值问题虽然不是热门题型,但近几年也常常更换形式进行考查。这类题目掌握方法就能拿分,你掌握了吗?今天国家事业单位考试网(www.czhhdb.com)带领大家学习一下。


      知识点


      1.题型识别:常以经济利润问题的形式出现,最后求出什么时候获利最多或利润最高是多少?


      2.题型:给出一个方案,然后进行调整,常?;岢鱿?ldquo;每……就……”,此消彼长,求……获利最大/最大是多少。


      两点式求法:


      1. 根据条件列式子,写成两个括号相乘的形式。


      2. 求出使算式等于0时,x的两个值。


      3. 计算两个x的平均值,此时y取值最大。


      4. 求出下列各函数当x为多少时函数可取得最大值。


     ?。?)y=(35-5x)(3+x)。答:x1=7,x2=-3,当x=(x1+x2)/2=(7-3)/2=2时,函数可取得最大值。


     ?。?)y=(18+3x)(28-2x)。答:x1=-6,x2=14,当x=(x1+x2)/2=(-6+14)/2=4时,函数可取得最大值。


     ?。?)y=(150-2x)(100+4x)。答:x1=75,x2=-25,当x=(x1+x2)/2=(75-25)/2=25时,函数可取得最大值。


      示例(2020江苏)

     

      某商品的进货单价为80元,销售单价为100元,每天可售出120件。已知销售单价每降低1元,每天可多售出20件。若要实现该商品的销售利润最大化,则销售单价应降低的金额是


      A.5元


      B.6元


      C.7元


      D.8元


      解析:


      设降价x元可实现利润最大化,已知“销售单价每降低1元,每天可多售出20件”,调价后销售单价为100-x元,进货单价为80元,则降价后单个利润为(100-x-80)=20-x元;降价后的销量为120+20x件。


      根据 总利润=单个利润 × 数量  可得,所获得的总利润y=(20-x)×(120+20x)。令y=0,则20-x=0或120+20x=0,解得x1=20,x2=-6。当时,获得总利润最大,故应该降价7元。


      故正确答案为C。

    王中王心水精选资料论坛,王中王料精选资料大全,王中王心水冰坛资料精选,4887管家婆结果开奖结果小说,管家婆期期准精选资料大全-www.czhhdb.com管家婆期期准精选资料大全14288 管家婆精选十码三期必中 刘伯温四肖选一肖中特春肖 王中王内部精选资料大全 王中王心水精选资料论